

 Thoughts on Agile

1 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

What is Agile:

Agile is a way of developing software and other
‘soft products’ focused on flexibility and adapting to
changing user or customer requirements to
maximise value. In many circumstances the end
user / customer either doesn’t have the knowledge
to specify its requirements fully before
development starts, or circumstances change, or
new insights during the course of the project
suggest better ways of achieving value. Agile can
adapt to maximise the value created in these
circumstances.

Traditional project management focuses on up-

front planning and estimating to define the project and then efficiently delivering the defined
requirements ‘to plan’1. The traditional approach is optimal in a wide range of circumstances including:

• When the outcomes or deliverables are well understood; eg, a typical construction project.

• When knowing the precise form of the outcome or deliverable is critical to other aspects of the
overall program of works; eg, the software that is integrated with an aircraft’s avionic control
systems.

• When there are long lead time items to manufacture and then fit into other aspects of the
project’s overall work; eg, typical engineering and infrastructure projects.

These types of project are known as ‘closed’ or ‘semi-closed’ projects: the objective is clear2.

For ‘semi-open’ and ‘open’ projects the challenge is altogether different.

� he final objective is not clear and the ways of achieving the objective may or may not be known.
is typical for most business software projects and business change projects. There may be a clear

1 A criticism of the traditional ‘Waterfall lifecycle’ is that it follows a ridged single pass approach from planning to
implementation. However, the original paper by Royce suggests arranging the project so the end result is the
second pass through the lifecycle since it would be impossible to remove all the uncertainty on a single pass -
yet many people equate the waterfall lifecycle to a single pass approach (with all the associated woes).

2 For more on project typology, see: Projects aren’t projects – Typology:
https://mosaicprojects.wordpress.com/2009/04/09/projects-arent-projects2

 Thoughts on Agile

2 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

aspiration or strategy, discovering how to get there is a journey. This is the space where Agile
methodologies offer significant advantages over more traditional software development methods3
provided the performing organisation can properly govern4 and manage the agile development
environment.

Agile is not a synonym for anarchy5. The Agile Manifesto outlines the philosophy for the ‘movement’;
see: http://agilemanifesto.org/. From this starting point a range of methodologies have developed
including Scrum and XP.

Understanding Agile:

The first key point of understanding is that Agile is not of itself a project management methodology.
Agile is a soft product development methodology primarily used in software development but with
significant potential in a wide range of application areas. The methodology can be used for routine
operational maintenance of software within an organisation as effectively as for the development of a
new software system within a project6.

The difference between operations and projects can be summarised as follows:

• Projects are temporary, unique endeavours undertaken to achieve a defined objective; once
the objective is achieved (or found to be unachievable or undesirable) the project is closed.
The objective may be defined in traditional terms of time cost and scope, or in more outcome
focused language such as a defined problem satisfactorily resolved but if there is not a
defined objective to be achieved before closure, the work being undertaken is not a project.

Project management is the process of defining scope, deciding on methodologies, creating
teams, and all of the other project management processes defined in the PMBOK® Guide.
When Agile is chosen as the product development methodology for a project it will certainly
influence the way the project is planned, resourced and controlled but of itself, Agile is not
‘project management’. Projects are delivered by temporary teams assembled to work on the
unique project deliverable (as described in the Project Charter) and then reassigned to other
work as the project closes down.

3 For more on selecting the right projects for Agile see:
https://mosaicprojects.wordpress.com/2010/06/13/selecting-the-right-projects-for-agile/

4 For more on governing agile see: https://mosaicprojects.com.au/PDF_Papers/P177_Governing_Agile.pdf

5 PMI define three types of lifecycle that use progressive development either as a stand-alone approach or as
pert of a hybrid approach combined with elements of a traditional predictive project delivery methodology:

 - Iterative (Spiral and other similar methodologies) – the end product (exit criteria) is developed progressively,
the first iteration builds a ‘rough framework’ for the overall product, then each phase improves or refines the
product through a series or repeated cycles (eg, to improve the efficiency of a process). Each iteration is
usually quite small, and learning from earlier iterations are used to improve later iterations. The scope does
not change without authorisation.

 - Incremental - New features or functions are added during each cycle, phase 1 delivers part of the product in
a usable form, later phases add the additional features or functions required to achieve the final end product
(exit criteria). The scope does not change without authorisation.

 - Adaptive = Agile – the project scope adapts to the evolving needs of the client. The focus is on customer
satisfaction rather then delivering a pre-defined scope of works for a set price. The scope is expected to adapt
to meet changing client requirements as everyone learns what is ‘best’ through the work of developing earlier
iterations.

 Frequently iterative and incremental are combined with a simple prototype being developed first and then this
initial 'working model' is progressively improved and enhanced during each project phase (iteration) until the
full scope and functionality is achieved. The difference between ‘Agile’ and, ‘iterative and incremental’
lifecycles is the way scope changes – Agile expects the scope to be adapted to meet emerging client
requirements, the other two options are focused on risk minimisation by avoiding a ‘big bang’ implementation.

6 For more on this see: Agile is NOT a Project Management Methodology:
https://mosaicprojects.wordpress.com/2009/03/05/agile-is-not-pm

 Thoughts on Agile

3 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

• Operational work in IT tends to be characterised by stable teams working on dozens of minor
objectives selected on the basis of an organisation wide prioritisation. The work still needs to
be planned, managed, budgeted and resourced but so does all operational work.
Unquestionably, Agile can be a very effective methodology for the management of IT
maintenance work7.

The major difference between operations and projects is permanent teams -v- temporary teams and
the overall objective of the activity.

• Projects are about implementing a changed state for the organisation or community; eg, a new
building. Creating a new capability.

• Operations are about maintaining and improving the current status quo; eg, typical plant and
software maintenance. Incrementally creating an improved or enhanced capability8.

Scrum and XP are Agile product development methodologies that can be chosen for many IT
applications. They can usefully be deployed in both operations and projects (unlike ‘waterfall’ which is
almost exclusively a project based methodology). Agile would probably also be extremely useful in
other situations such as developing training materials and many business change projects where most
of the deliverables are relatively intangible and subject to change based on new learning as the project
progresses. However these advantages cannot turn them into an IT project management methodology
any more than deciding to use a particular construction technique such as precast concrete can make
‘pre-casting’ a construction project management methodology.

Agile Project Management:

There are two aspects to consider. One is applying Agile principles to the management of any project.
The other is the need to adapt traditional project management processes to facilitate the effective
management of an IT project using Agile as the product delivery mechanism.

The adaptations to traditional project management processes needed to allow Agile to work best are
briefly discussed below, see also Managing Agile Projects9.

In the opposite direction, the Agile community has some good ideas to pass on to conventional project
managers, including:

Customer Engagement

While it may not be possible to iterate the building of a piece of machinery, engaging and explaining to
the customer in their language -no jargon- what's happening will highlight issues early. If the customer
doesn't like something, the sooner you know the better.

One of the key tenets of Agile is to engage effectively with your customer and end-users, understand
their needs and problems, and then deliver an effective solution. This requires regular and effective
communication, openness and accountability, and a good measure of trust to support robust
relationships between the project team and their key stakeholders.

7 For more on this see: De-Projectising IT Maintenance:
https://mosaicprojects.wordpress.com/2009/03/06/de-projectising-it-maintenance

8 For more on the definition of a project see: Developing a concise definition of a project:
https://mosaicprojects.com.au/PDF_Papers/P007_Project_Fact.pdf

9 See Managing Agile Projects: https://mosaicprojects.wordpress.com/2009/03/07/managing-agile-projects

 Thoughts on Agile

4 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

Going Light and Lean

Those are hardly new ideas, but they've been embraced by the Agile philosophy for a good reason,
they work!

• Lean10 was developed by Toyota as a manufacturing philosophy and has been adapted to
many other areas. Some of its key principles, such as minimising unnecessary movement,
simplifying process and continuous improvement, have huge potential in project management.
The principles of ‘Lean’ are:

o Specify value from the perspective of the end user or customer

o Review all of the steps in the value stream for each product – eliminate those steps
that do not create value

o Make the value creating steps occur in a tight sequence so the product flows smoothly
towards the customer

o As flow is introduced let customers pull value from the preceding step (upstream
activity)

o Once the full system has been introduced, continually improve the process to
eliminate all waste.

o These principles are supported by ‘lean enablers’, practices that improve workflows:

� Base human relations on respect for people

� Define value from the perspective of the stakeholders

� Plan the work as a ‘value-add’ stream (or streams)

� Organise the value stream as an uninterrupted flow of tasks

� Pull the work in progress forward as needed

� Make all imperfections visible and pursue perfection.

• Light is focused on the minimising unnecessary overhead. Complex plans and processes
should be simplified, but only to remove excess complication, not to remove core
requirements.

Slimming down the project management overhead to its optimal level is probably the easiest way to
free up the resources needed to engage your stakeholders more effectively and is definitely supported
by A Guide to the Project Management Body of Knowledge (PMBOK® Guide).

10 For more on Lean & Light see:
https://www.mosaicprojects.com.au/WhitePapers/WP1046_Process_Improvement.pdf or
http://en.wikipedia.org/wiki/Lean_manufacturing

 Thoughts on Agile

5 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

Project Managing Agile:

Traditional project management has grown up focused on typical engineering projects where the final
product to be delivered is scoped, designed, built, tested and implemented – in that order. This is OK if
the client knows what it needs precisely and the number of changes is relatively small. This paradigm
is not so effective if the project is a quest to achieve an objective11 and everything changes routinely.

Agile is a methodology ideally suited for developing projects where an iterative approach is needed to
refine understanding and deliver value early, typical in many software and other ‘soft’ projects, but if
the work is to be managed as a project how should the PMBOK® Guide processes be applied?.

The PMBOK® Guide has 9 technical knowledge areas12:

Project Scope Management

Traditional project management expects scope management to define the output. In an Agile project
the final outputs should be defined in terms of achieved capabilities, how the capability will be
achieved will be discovered along the journey.

This makes ‘Verifying the Scope’ interesting. There needs to be clearly defined way to assess if the
capability has been delivered. How do you measure a ‘user friendly interface’? It’s not impossible to do
but how it’s done needs to be clearly defined. Change control is also more challenging, as is
configuration management.

Project Schedule Management

Ideally time should not be an issue if the objective is to achieve a required capability. In reality there
are usually deadlines.

In an Agile project, scheduling and workflow become closely aligned. The key requirement is an
overall system architecture that defines the sequence modules need to be built in to allow progressive
testing and implementation of capability. The software architecture defines the build sequence that
defines the schedule.

Scheduling is at a much higher level though. A ‘sprint’ is likely to be a single activity of 1 to 4 weeks
duration13. The sequencing of the ‘sprints’ and the number of sprints that can operate in parallel define
the resource requirements and the project duration.

Project Cost Management

Agile projects have to be based on a cost reimbursable system. One tool designed to include a degree
of competition with the ability to properly compensate the contractor for its work was southernSCOPE
the methodology requires tenders to bid on a project at a $ per function point rate based on a project
description and the estimated number of function points. At the end of the project the same
independent person who prepared the initial estimate, re-counts the function points and the price is
determined.

This innate variability in Agile creates two issues for management the first is deciding if the project
objective is to achieve as much as possible within a pre-defined budget (scope is the variable) or if the
objective is to achieve a defined functionality (eg, a complete system) as cost effectively as possible.
In either situation formal performance management techniques (Earned Value14) can still be applied,

11 For more on the different type of project see Project Size and Categorisation:
https://www.mosaicprojects.com.au/WhitePapers/WP1072_Project_Size.pdf

12 The PMBOK® Guide also includes ‘Integration Management’, however, the principles defined in Integration
Management do not change based on the type of project being managed.

13 Sprints are typically ‘time boxed’ and the amount of work included in each sprint designed to allow completion
within the agreed time. For more on time boxing see:
https://www.mosaicprojects.com.au/WhitePapers/WP1020_Time_Boxing.pdf

14 For more on Earned Value see: https://www.mosaicprojects.com.au/WhitePapers/WP1081_Earned_Value.pdf

 Thoughts on Agile

6 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

however, the performance metric is more likely to be either ‘function points’ or the ‘story points’ used
to plan sprints and assess the backlog.

Project Quality Management

This is probably easier under Agile. The basic definition of ‘quality’ is ‘fit for its intended use’. Quality is
continually assessed by the involvement of the client and the iterative release of modules to
production.

Project Human Resource Management

Basically remains unchanged but the skills of the people needed for an Agile project are likely to be
different.

Project Communications Management

The level of trust needed to run an Agile project is much higher than a traditional project. Effective
‘real’ communications in all directions are essential. This is different to producing project reports!

Project Risk Management

Recognize you are on a journey focused on delivering value. Significant time and cost contingencies
are needed and should be used to optimize the value of the final product.

Project Procurement Management

This should not change significantly BUT the procurement process needs to be aligned to what it is
being bought. Agile works in a collaborative partnering space. In the engineering world these are call
Alliance Contracts. Traditional contracts will not support Agile delivery methods.

Project Stakeholder Management

Effective engagement with core stakeholders, particularly the client is central to the Agile Manifesto.
This aspect of project management is likely to have a much higher priority in an Agile project than a
traditional project.

In conclusion:

• Tailor the processes in the PMBOK® Guide appropriately to work effectively with an Agile
project delivery method and the overarching PM process will enhance the probability of
success.

• Treat an Agile project in the same way as a traditional project and the PM processes will
guarantee failure (or at least fail to contribute much)!

The Three basic Agile Methodologies:

These are probably the three most popular agile methodologies:

1. Scrum

Scrum has found its way into a variety of projectized organisations, including law firms and
universities. The non-profit Scrum Alliance15 defines the key elements of Scrum as:

• A prioritised wish list called a product backlog is created.

• During the planning phase, the team selects a small chunk from the top of that wish list, called
a sprint backlog, and decides how to implement those pieces.

• The team is given a certain amount of time, called a sprint, to complete its work and meets
each day to assess its progress.

15 For more on Scrum see: https://www.scrumalliance.org/

 Thoughts on Agile

7 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

• At the end of the sprint—usually two to four weeks—the work should be ready to hand to a
customer.

• The sprint ends with a sprint review and a retrospective.

• The next sprint then begins.

For Scrum to cross over into other industries, you need to be able to break down the requirements into
a discrete set of items that could be worked across a set of iterations with usable (or defined)
deliverables at the end of each sprint.

2. Kanban

Kanban originated in the motor vehicle industry and is adaptable to non-software development
projects, including human resources and legal because its principles are not associated with any
specific industry. Its key principles are:

• Visualize the workflow. This can be done by using a card wall, with the columns on the wall
representing the states or steps in the workflow and the cards representing the work items.

• Limit the works in progress. Select the most important and valuable work items and keep
the number small to ensure the team is making good progress.

• Manage flow. The flow of work through each state or step should be actively monitored,
measured and reported in order to evaluate positive or negative effects of incremental and
evolutionary changes.

• Make process policies explicit. Ensure an explicit understanding of the mechanism of a
process to achieve a rational, objective discussion of issues—and facilitate consensus around
improvement suggestions.

• Improve collaboratively. To truly leverage Kanban, teams must collaborate. As with any
other agile method, the team should meet as a team to plan, meet daily for a stand-up, and
can choose to do retrospectives to inspect and adapt their process.

To adapt to a human resources project, for example, visualize the hiring process through a Kanban
board. Categories on the board would include a column for the candidates who submitted résumés, a
column for candidates who are qualified for the position and a column for candidates who have moved
past the phone interview process. Support that workflow with a document that outlines who is
responsible for these different roles and kickoff the process with a short meeting attended by all
stakeholders. (For more on Kanban see separate heading below on page 12).

3. Extreme Programming (XP)

XP focuses on test-driven development, small releases and a team structure that includes the
customer. Many of the rules for this agile methodology are designed specifically to address coding,
designing and testing. XP recommends planning the release at a high level, then planning each
iteration at its start (or every two weeks).

Key Agile Processes:

Some of the key differences between an ‘Agile’ approach to software development and the more
traditional ‘waterfall’ approach include:

Agile Requirements Gathering with User Stories

Knowing the goals of your end users and project stakeholders is the necessary first step to any
successful project, so just as in traditional projects, Agile projects start with basic requirements
gathering. However, instead of trying to nail down all of the details up front, Agile seeks to capture just
enough information to have a detailed conversation with the customer at a later date. This information
is gathered as ‘user stories’; short descriptions of the functionality in customer terms16.

16 For more on traditional requirements gathering see:
 https://www.mosaicprojects.com.au/WhitePapers/WP1071_Requirements.pdf

 Thoughts on Agile

8 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

A user story is a placeholder and a promise to have a future conversation about the needed
functionality. A useful structure for brainstorming user stories (although certainly not the only one) is
as follows: As a [Type of User], I want to [Function to Perform] so that [Business Value]. This format
focuses the story descriptions so that they stay customer and business value oriented instead of
technical in nature.

For example, in a sales management system, some typical user stories might be:

• As a sales person, I want to add a new contact so that I can follow up later with prospects.

• As a sales manager, I want to view new contacts added by salesperson, so I can track leads

• As a system administrator, I want to add a new sales person so they can access the system

Delaying the detailed conversation until shortly before development avoids some of the waste that is
typical of projects where detailed requirements are gathered early, but become invalid before the work
begins. Additionally, some requested features may no longer be needed by the customer after a few
months, saving the cost and effort of a detailed analysis and design.

To develop the most comprehensive list of requirements, it is important to define all of the key
stakeholders first, with a particular focus on the business users of the system, using a tool such as the
Stakeholder Circle®17. Once the appropriate stakeholders are identified, many options exist for
capturing the requirements including focused interviews and group sessions using techniques such as
brain storming and ‘Six Thinking Hats18’.

A key strength of Agile development approaches is the ability to incorporate new requests for
functionality as they are discovered. If some of the user stories aren't uncovered in the first planning
sessions they can easily be added later; particularly if the business climate changes or if the
stakeholders find they have forgotten something important.

Define the architecture:

Incremental improvements and maintenance work/projects work on an existing software and hardware
infrastructure and can largely be managed in an agile environment through prioritisation (discussed
below) and ‘burn down’ approaches to selecting work to incorporate in a sprint, with the application of
common sense. However agile can also be applied to the development of new systems; in this
situation a critical element is defining the technical architecture needed for the application to work.
This refers to defining and designing the hardware, software, databases, connectivity (internally and to
other systems), and other ‘things’, required to allow the new system to function, and to a lesser extent
how the different components in the new system will interact. There is absolutely no point in designing
a set of screens to fulfil a user requirement if the supporting database and hardware are not available
(the Agile objective for each sprint or iteration is working code). This has to be developed very early in
the project lifecycle - for instance in the setup sprint. Factors to consider in the design of the
architecture include:

• Hardware. Identify the hardware your solution will run on and any other hardware that will be
needed. Plus any hardware the system will interact with such as cell phones, personal digital
assistants (PDAs), printers, scanners, bar code readers, etc.

• Software. Identify any software and tool requirements. This would include things like the client
and server operating systems, browser type, third party software packages, etc.

• Interfaces. The major interfaces should be identified including data transfers to/from various
major components in the system being developed plus other applications, vendors, clients,
etc.

• Network. The network that is needed to support the solution should be diagrammed. This
includes modems, lines, routers, hubs, etc.

17 For more on the Stakeholder Circle® see: https://mosaicprojects.com.au/PMKI-TPI-075.php
18 For more on Six Thinking Hats see: https://mosaicprojects.com.au/Mag_Articles/P038_6_Thinking_Hats.pdf

 Thoughts on Agile

9 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

• Firewall/security. If your solution needs to run outside of your internal network, you will
probably need to incorporate security features such as a firewall. In fact, you may need two
firewalls (or more) to protect company data from unauthorised outside access.

• Datastores. Identify the major datastores and the specific package/vendor involved. For
instance, if you utilize a database, identify the specific software (Oracle, SQL Server, etc.). Do
the same for data marts, data warehouses, major files, cloud applications, etc.

• Tiers. Many solutions are created using a two tier (client-server) or three tier approach. Web
solutions, for instance, are typically designed in three tiers.

Detailed documentation is not needed; the architecture could be defined on a whiteboard or flipchart.
However, it is important that the information be shared with the team for additional ideas and
concerns. In general, the more complex your project architecture is, the more potential problems you
will encounter over time. Every piece of hardware and software, and every programming connection
and data exchange is subject to failure and bugs. The best solutions for long-term stability are the
simple designs that achieve the minimum functionality required using as few components as possible.

It is important that the project technical architecture is created by experienced staff because the
architecture will create far-reaching implications based on a limited amount of information. The
architecture does not have to be perfect the first time. However, it is important that the architecture be
as close as practical to the final outcome and it is also important that it be flexible.

Prioritising the Work:

After the initial requirements gathering, the user stories are prioritised with your customers:

• Prioritise the full list based on what’s important to your customer.

• Select a subset of these for your first release.

• Then choose an even smaller subset for your first iteration or sprint
(a fixed length time period during which development will take place, usually 1 to 4 weeks).

It is during the iteration planning process that the more detailed conversations with the customers
occur to define the details of the ‘user story’ and clarify any issues. This close contact with the
customer continues during development to enable the asking questions as needed.

Iteration / Release Planning:

Planning a release for an Agile software development is a collaboration between the development
team and customer team. Once a list of candidate user stories have been identified for the release,
the development team estimates the relative effort for each of the software features, as an input for
prioritising within the release.

One technique for this high level estimate is to use ‘points’, so that the estimates are based on the
relative size of each function (this one is twice as big as that one).

For example, for five stories around an online book store, the estimates might look like this:

• As a customer I want to browse books by category 4 points

• As a customer I want to search books by title 2 points

• As a customer I want to search books by author 2 points

• As a customer I want to buy a book with a credit card 8 points

• As an administrator, I want to add books to the store 4 points

This point allocation suggests the team believes that the search-related stories are about the same
size (2 points), the ‘browse’ story is twice as difficult as those (4 points), the ‘buy’ story is significantly
harder (8 points), and the administrative story is about as hard as the browse story (4 points).

To plan the iteration you start with the expected capacity of the team. If a similar team completed 10
points during the last release, then that could be the starting point for planning this one. However, for

 Thoughts on Agile

10 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

the initial iteration, it's best to be conservative - you can always add more functionality if the first few
iterations show that you can get more done than you thought.

Based on the prioritised list of user stories and their estimated size a balanced set of work is
determined for the first iteration. You prioritise based on the business value of the story, as well as the
developer estimate. In more complex developments, the software architecture may require
development in a particular sequence; eg, until some data tables are developed, a screen input
module may not be possible to develop and test.

Different combinations of stories should be considered to fill the release capacity in the most sensible
way. For example, it might make more sense to schedule 2 or 3 smaller stories of less importance
instead of a single larger, slightly more important story. Tools such as ExtremePlanner19 let's you try
out these scenarios until you've reached a stable point.

In the scenario above, the first iteration may build the administrative and browse functions with one
search. This would allow the book store to be populated with books and the basic system road tested
whilst the purchasing function is built together with the second search as a second iteration. Once
both iterations are 100% complete, the first release of the bookstore to the buying public can occur.

To make this work, and fulfil customer needs, at the beginning of every iteration a meeting is held
between the product owner and the project team to determine the workload for the new iteration.
During the meeting the product owner evaluates the requirements backlog and pulls off the next set of
user stories that are of the highest priority (the level of effort for each user story should have been
assigned when it was added to the backlog) and the project team agree to take on as many story
points as they can complete within the iteration to optimise ‘velocity’ and maintain ‘rhythm’. User
stories that are selected for a iteration need to be completed in that iteration. Which brings into
consideration another key Agile tenet: that before each iteration can be completed; the functionality
must be fully tested and signed off by the client.

Optimising ‘velocity’ is important, the workload to stay relatively even from iteration to iteration. If the
project team found it was not able to complete a set of user stories in the time allowed for a prior
iteration, the team can agree to take on less work in the next. Likewise if the team realises that they
could have done more work in an iteration they should take on more work in the next. The pace at
which the team can complete story points from the backlog is known as the team’s ‘velocity’.

Maintaining ‘rhythm’ is important. In an Agile project it is important to stay on a steady iteration cycle If
a story is not ready when the iteration is ready to move to production, the affected code needs to be
pulled out so that the remaining code from the iteration can be released on time. There should be no
delays to the iteration completion date. The focus is on hitting the end-date over and over again. This
steady pace for each iteration is called the team “rhythm”.

Test Driven Development (TDD)

This term refers to a process of understanding the requirements within a user story and then
immediately defining the tests that are used to validate that the requirement exists and is correct. As
each test is created, code is written to validate that the test works as planned. The logic for this
technique is that when code has been written to validate each possible test of a requirement, the code
to implement the requirement is completed. In addition to the code being completed, the testing
process should be simple since the appropriate tests were already defined and the code was built to
successfully pass the tests.

This TDD technique does not always catch logic that is required between components, or where a
cascade of events across different components results in an error. So, the TDD approach to
development must also be combined with more of a big-picture view of how the components
interrelate so that the full solution minimizes defects.

19 For more on ExtremePlanner see: http://www.extremeplanner.com

 Thoughts on Agile

11 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

Each test case should describe how you will validate one feature, function or requirement. A typical
test case contains the following information:

• Test case ID. This is the ID of the test case to be used for tracking throughout the testing
process. If you are tracking requirements, you can use this test case ID to cross-reference
with the requirement ID.

• Feature / function / requirement to test. Describe the feature, function or requirement you
are testing. If the requirements are numbered, this can be cross-referenced here as well,
rather than repeating the requirement again.

• Data or activities required to test. Describe the test data and the input that is required. If
there are multiple values required to test certain conditions, they can be listed on each line.
For instance, if you are testing the acceptance of a credit card number, you might want to
include test data for each of the following:

o A valid credit card number (probably a dummy number given by the bank)

o An invalid credit card number

o A number with too few digits

o A number with too many digits

o A number with alphas

o A number with blanks separating each set of four numbers

o A number in an invalid format (blanks or dashes separating the sets of four numbers)

• Expected results. Describe the expected output for each specific condition.

These test cases are used to build test data for the initial tests. Additional test cases can be defined
during the testing process.

Day-to-Day Agile Management

One of the key attributes of an Agile approach to software development is the emphasis on close
communication within the team as well as with the customer. Team communication usually takes the
form of a brief daily meeting where the team members can share progress and identify obstacles. In
the Scrum method, this meeting is called a Daily Scrum, while the XP method refers to this as a Daily
Stand-up Meeting.

The purpose of the daily meeting is for each team member to communicate three critical items:

• What they've accomplished since the last meeting

 Thoughts on Agile

12 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

• What they are planning to work on next

• Obstacles or challenges they have encountered

It's important that the team is safe to honestly communicate status and issues in the daily meeting
because the overall project controls are likely to be at the iteration level, not the detailed activity level
inside each iteration [see: Managing Agile Projects20].

Project managers should take care not to stifle the flow of information by challenging honest reporting
or trying to control the meeting. The successful Agile PM focuses on supporting the team and
removing obstacles to their success [see: Servant Leader21].

The use of a visual aid in the meeting room to show the stories and tasks that they are being worked
in the iteration on is valuable. This can take the form of a taskboard with index cards that can be
moved around, or a computer and a projector that can show an electronic representation of the
iteration. The taskboard should be updated either during or before the daily meeting. This usually
involves identifying any completed tasks from the previous day, updating in-progress tasks with new
estimates (if necessary) and team members selecting new tasks to work on today.

JIRA, a tool developed by Australian Company Atlassian, can be used for bug tracking, issue tracking,
and project management. The name ‘JIRA’ is actually inherited from the Japanese word "Gojira" which
means "Godzilla". The basic use of this tool is to track issues, and bugs in your project and developed
code.

Managing the Iteration and Release Date

Agile methods use iterations, or short, time-boxed development cycles22. During an iteration,
developers work on the highest priority features. They plan to complete whatever they committed to by
the end of the iteration. However, due to the unpredictability of software development, it is likely the
team will have too much to do (and less frequently, not enough to do) if they are estimating honestly.

When there is too much to do, the best option is to cut scope, since changing the iteration date
undermines the primary advantage of time-boxed iterations - achieving predictable and quick,
technical and business feedback (see discussion on rhythm and velocity above). Adding more
resources part way through an iteration rarely works.

There are three effective ways to cut scope while preserving high quality, each of which has different
tradeoffs:

• Simplify Over-engineered Designs: Make sure that you are doing the simplest thing that
meets the requirements for today's functionality, testability, and ease of maintenance – don’t
over-engineer for the possible future.

• Simplify Features: Most specific feature requests can be solved by alternative means that
still address the business problem. An automatic notification whenever any order is placed
may be solved by a complex real-time change to the on-line order system, or by an hourly
email with an order summary report. The latter might be a matter of minutes to implement with
a simple database report, while the former might mean intrusive, risky changes to the order
processing logic in the system.

• Cut Low Priority Features: As a last resort, you may need to eliminate the lowest priority
features to make a deadline.

20 Managing Agile Projects, see: http://mosaicprojects.wordpress.com/2009/03/07/managing-agile-projects

21 Servant Leader, see: https://mosaicprojects.com.au/WhitePapers/WP1014_Leadership.pdf

22 For more on timeboxing see: https://www.mosaicprojects.com.au/WhitePapers/WP1020_Time_Boxing.pdf

 Thoughts on Agile

13 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

You build trust and confidence by involving the stakeholders in tough decisions while there's still time
for them to react; so communicate with your customer about the proposed cuts as soon as possible to
allow them to re-negotiate priority if necessary and maintain value.

Kanban development:

Kanban is a lean manufacturing process designed to eliminate unnecessary work in progress23.
Kanban thinking applied to Agile development results in sweeping changes including:

• time-boxed development is out

• stories are larger and fewer

• estimation is optional or out completely

• velocity is replaced by cycle time

Kanban development revolves around a visual board used for managing work in progress.

The basic idea is stories start on the left side of the board and move quickly through the phases of
development necessary for them to be considered ‘done’. Finished stories, ready to release into
production pile up at the end.

Each process step column is divided into two parts: The top is used for stories currently in progress in
that phase. The bottom is the buffer. When work for that phase of the story is completed, it moves
from ‘in progress’ in the current phase to the ‘buffer’ where it will wait to be pulled into the next phase.

Because this is a Kanban board the amount of work in progress is limited, as is the number of stories
allowed on the board. The numbers written on the bottom limit the number of stories allowed at each
station. The stations themselves are not fixed; they are optimised for any particular software

23 For more on Kaban in manufacturing see: http://en.wikipedia.org/wiki/Kanban

 Thoughts on Agile

14 of 14

Prepared by Mosaic Project Services Pty Ltd from multiple sources: www.mosaicprojects.com.au

environment. The number of stories allowed overall and at each station are a factor of the people
capable of doing the work. The team needs to be balanced and flexible to minimise throughput time
and avoid bottlenecks at individual stations.

Kanban stories are larger then the minimal stories used in other Agile techniques. Each story
represents a ‘minimal marketable feature’ (MMF). To be marketable the feature needs to be large
enough to be useful. A MMF may take weeks to build. But the important thing isn’t how long it takes to
build, but that it will be understandable and valuable to those who’ll receive it.

Conclusion:

Agile is an effective tool for use in delivering products where the outcome is uncertain. Whilst created
as a software development methodology, many of the ideas can translate to mainstream project
management.

First published 8th October 2010, augmented and update.

Downloaded from Mosaic’s PMKI
Free Library.

For more papers focused on Agile see:
https://mosaicprojects.com.au/PMKI-TPI-070.php

Or visit our PMKI home page at:
https://mosaicprojects.com.au/PMKI.php

Creative Commons Attribution 3.0 Unported License.

